

Chips at CERN

Marco Andorno (marco.andorno@cern.ch) on behalf of the SOCRATES team

European Organization for Nuclear Research

European Organization for Nuclear Research

International laboratory

25 member states - 9 associate member states - 2 observers Scientists from all over the world come together to build and use some of the most technologically advanced experimental machines

European Organization for Nuclear Research

Particle physics research

Largest High-Energy Physics (HEP) lab in the world to study the interaction of elementary sub-atomic particles

CERN and High-Energy Physics Experiments

- Accelerate and collide particles (e.g. protons) at almost the speed of light
- Take 40 million "pictures" per second of their interactions to detect and identify new particles

ASICs for HEP

Demanding constraints:

- Limited material and power budget
- Long lifespan of components
- **Extreme** radiation tolerance:

Very specific applications:

- Many fast data readout channels
- Unique signal processing techniques

Cumulative effects

 Caused by the accumulation of charge in sensitive areas of the transistors over time

Cumulative effects

- Caused by the accumulation of charge in sensitive areas of the transistors over time
- Transistors don't turn on/off anymore

Cumulative effects

- Caused by the accumulation of charge in sensitive areas of the transistors over time
- Transistors don't turn on/off anymore

Temporary effects

- Caused by a single ionizing particle depositing charge on a circuit node
- Can cause a Single Event Effect (SEE)

Cumulative effects

- Caused by the accumulation of charge in sensitive areas of the transistors over time
- Transistors don't turn on/off anymore

Temporary effects

- Caused by a single ionizing particle depositing charge on a circuit node
- Can cause a Single Event Effect (SEE)

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you.

20% complete

For more information about this issue and possible fixes, visit https://www.windows.com/stopcode

If you call a support person, give them this info:

Stop code: CRITICAL PROCESS DIED

Radiation problems (SEE)

• They can happen on combinational logic or analog circuits as temporary spikes of current (SET,

Single-Event Transients)

14

• They can happen on sequential elements (like flip-flops) and cause a bit flip, changing the stored value (SEU, Single-Event Upsets)

CERN

Radiation problems (SEE)

• They can happen on combinational logic or analog circuits as temporary spikes of current (SET,

Single-Event Transients)

• They can happen on sequential elements (like flip-flops) and cause a bit flip, changing the stored value (SEU, Single-Event Upsets)

Design techniques exists to mitigate or prevent these effects, the most common is **Triple Modular Redundancy (TMR)**

The microelectronics section at CERN

Part of the Electronics for Experiments (ESE) group

Pixel readout chips

RD53

SSA

Data transceivers

LpGBT

Power converters

DC-DC converters

... to medical and educational applications

Timepix

Medipix

MPA

The HEP community and CERN's role

- These ASICs aren't developed exclusively at CERN, but in a community of 50+ universities and research institutes involved in High-Energy Physics.
- CERN acts as a reference point for them, providing:
 - Technology access and support

Guiding the community

Radiation evaluation

Characterize the radiation response of new technologies

Establish the next node for the community to design on

ASIC Support Service

- Provide PDKs and reference design flows for fault-tolerant designs
- Maintain IP blocks
- Run training courses

The problem

The problem

Future LHC and detector upgrades require more complex ASICs

They require advanced technology nodes, that come with high development costs

The problem

Future LHC and detector upgrades require more complex ASICs

They require advanced technology nodes, that come with high development costs

The solution we propose

Turn our custom ASICs into programmable fault-tolerant SoCs to get:

Faster design and verification turnaround time

... but a single architecture can't fit all our applications, so...

Comprehensive toolkit to generate highly-customizable systems that can be integrated in custom radiation-tolerant ASICs. Its main goals:

Unified build system for HW and SW

Library of radiation-tolerant verified IP blocks

Fault-tolerance support

It's going to be open-sourced for HEP and the wider open-source HW community

22

Easily compose IP blocks into SoCs

```
UART
addrmap rv_plic #(
                                            uart.sv
  apb_intf INTF = apb_intf'{
      ADDR_WIDTH: 32,
                                            uart.rdl
      DATA_WIDTH: 32,
      prefix: "s_apb_",
                                            CMakeLists.txt
      modport:Modport::slave,
      cap:false
                                                   any other IP block
  ifports = '{ INTF };
  signal {
      desc = "PLIC interrupt sources";
                                                             PLIC
      signalwidth = 16;
                                            plic.sv
  } intr_src_i;
                                            plic.rdl
      desc = "PLIC interrupt-pending request";
      signalwidth = 1;
                                            CMakeLists.txt
      output = true;
  } irq_o;
```

```
add_ip(pulp::ip::rv_plic::0.1.3)
ip_sources(${IP} SYSTEMVERILOG ${PROJECT_SOURCE_DIR}/hw/rtl/rv_plic_core.sv)
ip_sources(${IP} SYSTEMRDL ${PROJECT_SOURCE_DIR}/rdl/rv_plic.rdl)
ip_link(${IP}
    cern::socgen::apb
    lowrisc::ip::prim_cells
)
```

```
apb_rt_intf INTF = apb_rt_intf'{
                                                        SECDED_DATA:0,
                                                        SECDED_ADDR:0,
                                                        INTERLEAVE_DATA:0,
                                                        INTERLEAVE_ADDR:0,
                                                        prefix:"s_",
                                                        modport:Modport::slave,
                                                        cap:false
                                                    name = "APB-RT subsystem";
                                                    subsystem;
                                                             gpio
                                                                      @ 0x020000;
                                                    rv_timer rv_timer @ 0x030000;
                                                             uart
                                                                     @ 0x040000;
                                                    rv_plic rv_plic @ 0x050000;
                                                    soc_ctrl soc_ctrl @ 0x080000;
                                      -Top SoC-
                 periph_subsystem.rdl
                 soc.rdl
                 CMakeLists.txt
add_ip(cern::soc::triglav_soc::0.1.0)
                                                        ddrmap triglav_soc {
                                                           name = "TriglaV SoC";
ip_sources(${IP} SYSTEMRDL
                                                           subsystem;
   ${PROJECT_SOURCE_DIR}/rdl/apb_rt_subsystem.rdl
   ${PROJECT_SOURCE_DIR}/rdl/triglav_soc.rdl
                                                           clk clk_i;
                                                           rstn rst_ni;
ip_link(${IP}
                                                           mspu_mem #(.SECTIONS("text")) mem0 @ 0x000000000;
   lowrisc::ibex::cpu_wrap
   cern::ip::boot_rom
                                                           mspu_mem #(.SECTIONS("data")) mem1 @ 0x10000000;
   openhwgroup::ip::debug_subsystem
   cern::ip::soc_ctrl
                                                           boot_rom #(.SECTIONS("boot")) boot_mem @ 0x20000000;
   cern::ip::mspu_mem
                                                           debug_subsystem debug_subsystem @ 0x30000000;
   cern::ip::uart
```

cern::ip::gpio

cern::ip::rv_timer
cern::ip::rv_plic

addrmap apb_rt_subsystem #(

apb_rt_subsystem apb_rt_subsystem @ 0x40000000;

ibex_wrap ibex_wrap @ 0xFFFFFFF0;

cmake ../

```
module triglav_soc (
input wire [0:0] clk_iA,
input wire [0:0] clk_iB,
input wire [0:0] clk_iC,
input wire [0:0] rst_niA,
input wire [0:0] rst_niB,
input wire [0:0] rst_niC,
output wire [0:0] uart_tx_oA,
output wire [0:0] uart_tx_oB,
output wire [0:0] uart_tx_oC,
```

Top SoC Verilog

```
odule rv_plic (
 input wire [15 : 0] intr_src_iA,
 input wire [15 : 0] intr_src_iB,
 input wire [15 : 0] intr_src_iC,
 output wire [0 : 0] irq_oA,
 output wire [0 : 0] irq_oB,
 output wire [0 : 0] irq_oC,
 output wire [3 : 0] irq_id_oA,
 output wire [3 : 0] irq_id_oB,
 output wire [3 : 0] irq_id_oC,
 output wire [0 : 0] msip_oA,
 output wire [0 : 0] msip_oB,
 output wire [0 : 0] msip_oC,
 input wire [0 : 0] clk_iA,
 input wire [0 : 0] clk_iB,
 input wire [0 : 0] clk_iC,
 input wire [0 : 0] rst_niA,
 input wire [0 : 0] rst_niB,
```

TMR peripherals

Linker script

A nice block diagram

Peripheral HAL

TriglaV: a silicon demonstrator for SOCRATES

- Commercial 28 nm bulk CMOS technology, 2 mm², 250 MHz
- Full TMR lbex core
- ECC protected memory and peripheral bus
- Redundant booting mechanisms
- Error counters, dedicated debug outputs

Interested to join?

We regularly have offers for:

Master's thesis

Graduate positions

Internship

PhD

Staff positions

Graduate position currently open in our SoC team:

SoC design engineer (EP-ESE-ME-2025-113-GRAE)

Geneva, Switzerland Full-time

https://jobs.smartrecruiters.com/CERN/744000079406410-soc-design-engineer-ep-ese-me-2025-113-grae

Thank you!

home.cern